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The thermodynamics and kinetics of the self-assembly of cylinder-forming diblock copolymers di-
rected by the lateral confinement of hexagons have been studied by the combination of self-consistent
field theory (SCFT) calculation and time-dependent Ginzburg-Landau (TDGL) theory simulation.
The SCFT calculations are used to determine the stability of candidate 2D and 3D equilibrium phases
formed in small-size hexagons. Our phase diagram predicts the existence of stable phase regions with
respect to the hexagonal size, which is centered around the optimal size with an extent of about a
period, for the phases of perfect hexagonal cylinders. Our TDGL simulations reveal that the order-
ing event, in which the structure evolves toward the perfect state, occurs stochastically according
to the Poisson distribution, and the ordering time grows roughly with a power-law relation of the
hexagonal size. This prediction is helpful to estimate the annealing time for larger systems with the
knowledge of the annealing time of a small system in experiments. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4765098]

. INTRODUCTION

The self-assembly of block copolymers (BCPs) provides
an important platform for the fabrication of ordered micropat-
terns which have potential applications in the manufacture of
nanoscale functional materials.'~'? In practice, the BCP self-
assembly is used to extend the feature size of nanolithogra-
phy into finer size for sub-30-nm patterns in nanotechnol-
ogy applications,%!1:1? thus decreasing the cost of present
lithography techniques (e-beam or extreme ultraviolet lithog-
raphy). The technique of combining the BCP self-assembly
and lithography is referred as the BCP lithography, in which
the BCPs are spin coated onto sparcely patterned substrates
obtained by lithography and then the BCP phase separation
takes place under the direction of the pattern. The shortcom-
ing of absence of long-range order in the microstructures
formed by BCP self-assembly can be overcome by the direc-
tion of the patterned substrates, and thus large-scale perfectly
ordered patterns can be achieved.'>~?! The directing efficiency
of this lithography technique is described by the density mul-
tiplication (DM), which can quantify the ratio of the number
of self-assembled BCP domains to the number of directing
substrate pattern units in a given area or volume of the sample.
A larger DM means sparser substrate feature is required, thus
reducing the manufacturing cost. At the same time, a larger
DM reduces the directing ability of the pattern, and therefore,
increases the probability for defects to be caused.”>>’ Large-
scale dynamic simulations in two-dimensional (2D) space
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predict that the defect evolution of hexagonal cylinders on
2D hexagonally patterned surfaces follows an exponential-
decay law when the DM is not larger than 16, while it be-
comes close to the evolution behavior on uniform substrate,
i.e., multi-step power law, when DM is 36.>* This suggests
that the upper limit of DM is not larger than 25 when the
surface pattern has ideal directing effect. After taking the fac-
tor of film thickness and other experimental factors into ac-
count, such as BCP polydispersity, small incommensurability
between the periods of the BCP domain array and the sub-
strate pattern, the DM in experiments should be smaller than
25. To date, the largest DM from the 2D patterned substrates
realized by experiments is 9.'* The DM can be raised to be
higher by introducing 3D directing patterns, for example, pat-
terned nanoposts on substrates.'> Nevertheless, the DM is still
very limited. It has been proposed that the principle reason for
the limit is the microphase separating kinetics of BCPs often
involved in the BCP self-assembling process, i.e., spinodal or
near spinodal decomposition, where the microphase separa-
tion occurs rapidly and globally. Based on this mechanism,
extremely high DM is just obtained via the BCP phase sepa-
ration of nucleation on the patterned substrates by computer
simulations.?’> However, the research of the new scheme is at
the primary stage. An alternative directing method is the geo-
metrical confinement.

The BCP self-assembly under geometrical confinements
has been of great interest in both experiments and theo-
ries for decades. Geometrical confinement can be 1D (thin
films),?8-3¢ 2D (cylindrical),’’! and 3D (spherical or non-
spherical).’>>° The introduction of geometrical confine-
ments results in the formation of many novel microstruc-
tures by breaking the intrinsic symmetry in the BCP bulk
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phases.””3® For example, a number of interesting struc-
tures, including single/double helices, toroids, stacked disks,
have been observed in cylinder-forming BCPs under a
cylindrical confinement by experiments,3$4%30:51 computer
simulations,’”*%48 and theoretical calculations of self-
consistent field theory (SCFT).*!*4246 During the structure
formation, the geometrical shape of confinement also plays
an important role. A systematic study on the influence of
the nanopore shape on the structure formation of cylinder-
forming BCPs has been carried out using Monte Carlo (MC)
simulations by Li and co-workers.*® In ideal circular cylindri-
cal nanopores, it is rare to observe structures of straight cylin-
ders aligning along the pore axis as a stable phase except for
the formation of a central cylinder in narrow pores.*> When
the pore shape is changed to be a regular hexagon, thus shar-
ing the symmetry of the bulk phase, the double-layer hexago-
nal cylinders (seven cylinders) have been observed in a range
of pore diameter (about 3-3.2 L, where Ly is the cylinder-to-
cylinder distance).’® This existence of hexagonal cylinders in
the hexagonally confined BCPs indicates that the hexagonal
confinement has the potential to become an effective method
to direct BCPs to form perfect hexagonal patterns in large
scale. The results of MC simulation suggest that the phases
of hexagonal cylinders compete with other 3D structures, for
example, a number of helical phases.’® However, as MC sim-
ulation is not capable to determine the relative stability be-
tween different structures, the exact stability region has not
been calculated, yet. The stability region of hexagonal cylin-
ders is a useful guide for the lithography application via the
lateral hexagonal confinement. Furthermore, it is helpful to
gain further understanding on the influence of the pore shape
on the structure formations by comparing the phase diagram
with that of the circular cylindrical confinement. Therefore, to
identify the phase diagram with respect to the hexagonal size
is important for both application and theory. The SCFT based
on Gaussian chain model is one of the most successful theo-
ries to determine the relative stability of BCP-formed phases
because it can compute accurately their free energy.®*°' In
addition, the pseudo-spectral method of SCFT is also high
efficient to search new structures.% Therefore, we use the
pseudo-spectral method of SCFT to explore the phase stabil-
ity of structures formed in cylinder-forming diblock copoly-
mers under the hexagonal confinement.

In general, the technique of BCP lithography involves a
system size as large as microns. In very recent experiments,
Xu et al. have designed an effective hexagonal confinement
to direct the self-assembly of diblock copolymers toward per-
fectly ordered hexagonal cylinders in large scale.'” The sub-
strate patterns are fabricated by using metal-coated atomic
force microscope tip to oxidize the terminal methyl group into
carboxylic acid groups. The chemical contrast between the
patterned and unpatterned regions acts as an effective lateral
hexagonal confinement, under which perpendicular hexago-
nal cylinders are formed because of the slightly preferential
surfaces used in the experiments. Defect-free cylinder pat-
terns are observed in a hexagon with its longest diagonal (D),
as large as 500 nm, containing 161 cylinders. According to
the number of cylinders aligned along its longest diagonal,
D is roughly equal to 15Ly. For larger hexagons, such as D
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~ 600 nm and 1175 nm, small amount of defects are present
in the patterns. When increasing the hexagonal size further,
the number of defects is noticeably increased. The ordering
degree of the patterns formed by the BCP self-assembly con-
fined in such large hexagons is dependent not only on the ther-
modynamics, but also on the kinetics. Theoretically, Fredrick-
son and co-workers have examined the ordering and defect
formation of cylinder-forming diblock copolymers as well
as homopolymer/diblock copolymer blends under the lateral
hexagonal confinement using 2D SCFT calculations.®* Their
calculations predict the commensurability window, where a
well-ordered cylinder pattern is achieved, with a hexago-
nal size of around D ~ 9L . Their results predict that the
window width in three cases of lateral surface preferences,
(a) the majority attractive, (b) neutral, and (c) the minority
attractive, is AD ~ 2.5Rs, 0.5R,, and R, respectively, un-
der the quenching condition. While under the temperature an-
nealing condition, which is mimicked by slowly increment-
ing x N, the window width is increased tremendously for all
three cases, especially for the latter two cases. However, the
examined hexagon is obviously smaller than those in exper-
iments because of the limit of the computational time. Fur-
thermore, their theory is basically an equilibrium one, and a
careful investigation on the ordering kinetics of the present
confined system is still lacking. Therefore, it is desirable to
explore the ordering kinetics of BCP self-assembly under
the confinement of large hexagons which have comparable
size to those in experiments. It has been well established
that the cell dynamic simulation (CDS) based on the time-
dependent Ginzburg-Landau (TDGL) model is an efficient ki-
netic method which can describe the collective kinetics of the
BCP self-assembling behaviors.5>-%7 Its high efficiency allows
us to examine a system of size as large as microns which is
the typical size examined by experiments.?>2*

In the present work, we focus on the study of the self-
assembling behaviors of AB diblock copolymers under the
hexagonal confinement by using SCFT calculation as well
as TDGL simulation. First, the SCFT is used to explore the
phase behaviors of BCPs in narrow hexagons, and thus, to
predict the stable phase region of hexagonally packed cylin-
ders. Then, we use the TDGL simulation to examine the or-
dering kinetics of BCPs in large hexagons where the hexago-
nal phases are stable in equilibrium. The aims of the kinetic
simulations are to determine the ordering time (or annealing
time) for different hexagons, and to understand the ordering
mechanism by analyzing the defect evolution.

Il. THEORY AND MODEL
A. Self-consistent field theory

We consider an incompressible melt of AB diblock
copolymers confined in a regular hexagonal pore with a side
length of R, and the longest diagonal of D (D = 2R). Each
polymer chain has an equal polymerization N, and the vol-
ume fraction of A is set by the ratio of f = Na/N, where Np
is the polymerization of A block. Lengths in our SCFT cal-
culations are expressed in units of the radius of gyration, R,.
Within the mean-field approximation to statistical mechanics
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of the Edwards model of polymers,°"%® the free energy func-
tional F for n Gaussian diblock copolymer chains at a given

temperature T is written as

F
nkBT

1
=—InQ+ v [ dr{xas Noa(®)@p(r) — wA(r)Pa(r)
14

— wp(r)@g(r) — n(r)[1 — Pa(r) — ¢p(r)]
+ Hscrr(n)[@a(r) — ¢p(r)]}, (1)

where ¢4 and ¢p are the monomer densities. The quantity Q
is the partition function of a single polymer chain interact-
ing with the mean fields wa and wg, which are produced by
the surrounding chains, under the incompressible condition
enforced by the Lagrange multiplier of n(r). In the confined
melt, the spatial integration is restricted to the pore volume,
taken to be V. A function, Hscpr(r), is used to describe the
preferential potential of the lateral walls of hexagons on the
two species. Wang et al. have carried out a careful study on
the influence of the surface potential form on the phase behav-
iors in confined BCP systems, and their results suggest that
different forms of surface potential have rather limited influ-
ence on the formation of morphologies as well as the phase
transitions.®” A similar expression as those used in our previ-
ous work is applied,’®

Hscrr(r)

AN Vofexpl(o —d(r))/2] — 1.0} (@)

when the closest distance d(r) between the position r inside
the hexagon and any side is smaller than o = 0.5R,, and
otherwise, the surface potential is set to zero. The quantity
A = 0.25R, characterizes the steepness of the surface poten-
tial, and the positive constant Vy = 0.2 indicates that the pore
wall has a rather strong attraction to the majority blocks.”
Minimization of the free energy with respect to the monomer
densities and the mean fields leads to the following SCFT
equations®’

WA(r) = xapN¢p(r) + Hscrr(r) + n(r),
wp(r) = XaN@a(r) — Hscrr(r) + n(r),
0 =y [, drq(r,s)ql(x,s),

Pa(r) + ¢p(r) = 1.

In the above equations, g(r, s) and qT(r, s) are end-segment
distribution functions.®! These distribution functions satisfy
the modified diffusion equations

%§ﬁ2=V%@Ao—qumqu 4
S
f
—@%§ﬁ2=vwwnm—quman, 5)
S

where w(r,s) = wa(r) for s < f and otherwise w(r, s)
= wg(r). The initial conditions are ¢(r, 0) = ¢'(r, 1) = 1. For
numerical solutions, we employ the second-order operator-
split method (or the pseudo-spectral method),%> % to solve the
modified diffusion equations for the end-segment distribution
functions.

The cross section of the pore is set in the x-y plane, and
is put into a rectangular box whose size is slightly larger than
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the longest diameter of the pore. To regulate the calculations,
the 2D morphologies with translational symmetry along the
pore axis are examined in 2D calculations, and the 3D struc-
tures are examined in full 3D calculations. In 3D calculations,
the pore axis is aligned along the z direction. For the pseudo-
spectral method, periodic boundary conditions are imposed
automatically on the simulation box. The box is discretized
into a lattice of N, x Ny in 2D, or N, x N, x N in 3D. The
lattice size in the x-y plane is chosen as 128 or 256 accord-
ing to the pore size to ensure the lattice spacing is smaller
than 0.1R,, and N, is chosen as 64. The chain contour is di-
vided into 200 segments. More details about the SCFT calcu-
lations for confined BCP systems can be found in our previous
work. 142

B. Time-dependent Ginzburg-Landau theory

The density difference, ¢(r) = ¢pa(r) — ¢p(r), is chosen
as the order parameter to describe the phase separation and
the pattern formation of the diblock copolymer. The model
free energy can be written as a functional of ¢ which consists
of three parts: short-range, long-range, and the contribution
term from the surface field, Hrpgr(r):”!

Fl¢] = Fs[¢] + FLI9] + / drHrpgL(r)¢(r).  (6)

The short-range part Fg is the usual Ginzburg-Landau free
energy and is given by

C
Fs[g] = /dr { E[Vflﬁ(r)]2 + W(¢)} ; )

where C is a positive constant, W(¢) is the local interaction
contribution, and it can be specified by its derivative:

dw(@) _
i = ~hotnh@)+ 9, ®)

with a constant of Ay > 1 for the phase separation between
A and B. The long-range contribution is originally proposed
by Ohta and Kawasaki to alter the phase separation from
macroscopic in A/B blends to be microscopic in AB diblock
copolymers,’! which is expressed as

Fi(¢) = %/dl‘/dr/G(r— )3 (r)ép(r'), €))

where 8¢(r) = ¢(r) — @, and ¢ =2f — 1 is the average
value of ¢(r) over the whole space. In the above expression,
G(r — r') is the Green function, which can be conveniently
specified by

—V2Gr—-r)=68r—r). (10)

The positive coefficient « in expression (9) is proportional
to 1/N*f(1 — f), and is inherent to the block copolymer.5>7?
Similar as the scheme in the SCFT calculations, the Hrpgy(T)
in the last term of Eq. (6) acts as the preferential potential of
the lateral walls on the two species. An alternative form of the
potential is applied,

1
HrpgL(r) = —EUo{tanh[(a —dm)/el+1}, (A1)

when the shortest distance of the position r to any side of the
hexagonal pore, d(r) < 20. The quantities Uy, o, and € have

Downloaded 21 Jan 2013 to 61.129.42.14. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



194905-4 Xu et al.

similar physical meaning as those in the expression (2), but
have different values because of the difference of parameters
between the SCFT model and the TDGL model. Though the
different forms of the surface potential are used in the SCFT
and TDGL models, both of them are short-range surface po-
tential. Therefore, the potential form has rare influence on the
simulation results, especially for the case of D > o.

With the above free-energy functional, the dynamics of
the density evolution can be described by the Cahn-Hilliard
model (Model B):05-67

2 8F[¢]

9% _ uv — (1),

at ) (12)

where M is a phenomenological mobility coefficient, set to M
= 1, and ¢(r, 7) is a random noise term, with zero average and
a second moment of (¢ (r, HC(r, 7)) = —coMV28(r — r)8(¢
— 1), here ¢ is the noise strength.

We choose these parameters f = 0.39, Ag = 1.30, «
= 0.02, and ¢y = 0.04 to obtain the typical hexagonal
cylinder phase in bulk, and choose these parameters of the
surface potential as Uy = 0.02, o = 0.15L, and € = 0.5L
(Lo is the cylinder-to-cylinder distance in the bulk cylinder
phase). In the experiments of BCP lithography by Xu et al.,"”
the hexagonal confinement is realized in a thin film with
the thickness slightly less than Ly. Although a periodic
array of hexagons are examined simultaneously, they are
independent on each other. Therefore, only one hexagon is
simulated in each run which is carried out in 3D space. The
top and bottom surfaces are assumed to be neutral to allow
the formation of perpendicular cylinders in the thin film,
and the lateral walls are attractive to the majority block. In
practice, the reflective boundary conditions are utilized on
the two surfaces. The CDS method, where the forward Euler
algorithm is applied for the time integration and the explicit
finite differential scheme is applied for the space, has been
proven to be efficient to solve the TDGL equations.>* When
the lattice spacing in the CDS simulations is fixed as Ax
= Ay = Az = A = 0.5, the time step At is chosen as 0.1
to ensure the evolving stability of the dynamic equations.
Ly is determined as about 15.92A by the simulation of
bulk system. In order to reduce the simulation time of large
hexagons with comparable sizes to those in experiments,'’
we fix our film thickness to a small value, L, &~ 0.4L,, which
means that the height of the hexagonal pore is small. In this
case, we can focus on the structure evolution in the x-y planes
of the cross section, and at the same time, we also include the
influence of the presence of the top-bottom surfaces on the
ordering process by the simulation of 3D thin films.

lll. RESULTS AND DISCUSSION
A. SCFT calculations of the phase behaviors

The consistent symmetry between the hexagonal confine-
ment and the hexagonal cylinder phase suggests that hexago-
nally arranged cylinders cut by the pore wall should be the
most preferred morphology when the pore size is commen-
surate with the bulk period. That MC simulations observed
seven hexagonally arranged cylinders in the hexagon with an
appropriate size provides a simple proof.’* However, the sta-
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bility regions of hexagonal phases are not determined by MC
simulations. Furthermore, the phase behaviors in the present
system are rather similar as those in the circular cylindrical
confinement. A more careful study based on the SCFT cal-
culations is required to identify the phase diagram and to re-
veal the difference between the phase diagrams of the hexago-
nal and circular confinements. For a typical cylinder-forming
diblock copolymer, with fixed parameters of y N = 20 and
f = 0.26, first we explore the possible equilibrium solutions
of SCFT equations by a large number of random initial con-
ditions for each hexagon in the 2D space. By comparing the
free energy of these 2D phases, their relative stability as well
as their stable phase sequence as a function of the hexagonal
size is identified. The stable 2D phases and their phase se-
quence are presented in Figures 1(a) and 1(b), respectively,

()

e & Be G Sl Bas

NN |

L " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " ]

1.0 1.5 2.0 2:5 3.0 35 4.0 4.5 5.0 5.5
D/L,

)
0

0©
600}l {00
” S

CZG

(b)
C4-u Cs-u

FIG. 1. (a) Density plots of stable morphologies observed in the cylinder-
forming diblock copolymer melts, with fixed f = 0.26 and x N = 20, under
the confinement of two-dimensional hexagons with varying diagonal size of
D, in units of the bulk cylinder-to-cylinder distance of Lo; (b) stable phase
sequence of morphologies as a function of D/Lg; (c) density plots of observed
metastable 2D morphologies.
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C, Dk H, H, Cie H,SC,,H.H.C,.. Cicqs
— _
L 'l " 1 '} 'l
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FIG. 2. (a)Isosurface density plots and the density profiles of cross section of
three-dimensional morphologies. The major component inside the green iso-
surface is A block indicated by red-color region in the cross section profiles.
(b) Stable phase sequence as a function of D/Lg identified by considering
both 2D and 3D phases.

and the observed metastable phases are shown in Figure 1(c).
With the narrowest phase region of C,_g, we have checked the
influence of the grid lattice on the phase boundary by using
a doubled grid lattice, 256 x 256. Our results suggest that
the shift of phase boundary induced by the finer grid spac-
ing is smaller than the grid spacing itself. This suggests that
our calculations can give rather reliable predictions on the
stable phase regions. The imposed symmetry by the hexag-
onal boundary makes the 2D phase sequence, C; — C3 — C4

0'04 L L L L) LJ
0.02 F £
0.00 b
=
= -0} d
Z
-0.04 i
-0.06 [ d
-0.08
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AF/nk T
g
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4.0
D/L,
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— Cg = Ci6 = Cr3 = C39 = Cyy0 = Csip = Cis12,
different from that in the circular confinement, C; — Cj
- C4 > Cs - Cig > Ci7 > Cig > C39 > Cyp
— Cuqy = Csq; = Ci12.*! Those phases with notice-
able different symmetry from the hexagon, such as Cs, C;_7,
Cy4_11, and Cs_j; appearing in the circular confinement, are ex-
cluded by the hexagonal confinement. In addition, the stabil-
ity region of the hexagonal type of phases, C; ¢ and Ci_¢_12,
are expanded because of their consistent symmetry with the
hexagonal confinement.

There are a number of intermediate structures between
Ci_¢ and Cj_g_12, in which the domain arrangement becomes
more frustrated because of the mismatch of size and sym-
metry. In these phase regions, the polymer chains tend to re-
lease their stretching energy through the third direction, and
thus to form three-dimensional structures. All 3D structures
found in full 3D SCFT calculations, including stacked disks
(Dk), single helix (H;), double helices (H;), double helices
plus spheres (H,S), double helices plus rings (H,R), double-
double helices (HyH»), and double-double helices plus the
central cylinder (H,H,C), are shown in Figure 2(a), and the
new stable phase sequence, which is reconstructed by com-
paring the free energy of both 2D and 3D phases, is given
in Figure 2(b). The free-energy comparisons of the phase
diagram are presented in Figure 3. For the reason of clar-
ity, we divide the plot of the considered region into four
pieces. After including 3D phases, the stable phase sequence
becomes C] — Dk — H1 —> H2 — C1_6 d HQS d C3_9
— HH, — Cy41p — Ci_6_12, Where most of intermediate

0.04 T T T T T

(b)

——Cy
0.03 F

-0.02

-0.03 1 1 1 1 1 1

3.4 3.6 3.8

0.02 T T r r . r :
(d) —*—C1 612

46 48 50 52

D/L,

FIG. 3. Free-energy comparisons between all candidate 2D and 3D morphologies for hexagons with the diagonal size between Lo and 6L¢. For the reason of
clarity, the free energy relative to that of a selected reference phase is plotted, and the plot is divided into four pieces along the size.
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2D phases are replaced by 3D phases except for C3_9 and
C4_12. Obviously, the phase regions of the two intermedi-
ate 2D phases are narrower than those of the hexagonal 2D
phases like C; ¢ and C;_¢_1p, which are D/Ly &~ 2.54-3.55
and D/L &~ 4.51-5.51, respectively. In the phase sequence
of the circular cylindrical confinement,*” no any 2D phase
(straight-cylinder phase) is observed as a stable phase. Ac-
cording to the phase diagram of narrow hexagons, we can
predict the existence of the stable phase region of multi-layer
hexagonal cylinders, with a width of around L, for large
hexagons. This prediction suggests that it is feasible to use the
lateral hexagonal confinement to direct large-scale perfectly
ordered hexagonal patterns from the aspect of thermodynam-
ics. However, as the relaxation time of polymer systems is
long, the ordering time (or the annealing time), which is re-
quired by the hexagonal pattern to reach its perfect state, is
another dominant factor. If the ordering time is reasonable for
experimental observation, the perfect pattern is realizable in
practice. Otherwise, if the ordering time is as long as tens of
days, it is too difficult or costly to obtain the perfect pattern.

B. TDGL simulations of the ordering kinetics

The phase diagram in Figure 2(b) predicts that the
hexagonal-cylinder phase region is centered around the op-
timal diagonal size of D with D/L, being the odd number, and
has a width of approximately a period of L. Ly is estimated
as 15.92A by the Fourier transformation of the density profile
in bulk. First, we simulate the ordering process of structures
in the hexagon of D & 15L, which corresponds to the di-
agonal size of about 500 nm for the PS-b-PEO of an overall
molecular weight of M, = 26.5 kgmol~! in the experiments
by Xu et al.'” Figure 4 gives a number of typical density snap-
shotsatr =5 x 10*Az (a), t = 10°Ar (b), and r = 2 x 107 At
(c) during the structure evolution. Here the time unit is cho-
sen to be the time step of Az = 0.1, unless otherwise spec-
ified. In fact, the time unit is re-normalized by A%/M. The
time unit corresponds to a longer time for smaller mobility of
higher molecular weight. At the initial stage of t = 5 x 10%,
the phase separation just starts, and the cylinder domains are
not well formed. After another t = 5 x 10* the phase sepa-
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FIG. 4. Typical snapshots of density isosurfaces at t = 5 x 10*Ar (a),
t = 10°Az (b), and t = 2 x 10° Az, respectively, for the diagonal size of
the hexagon, D/Ly = 15.
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ration has been almost done. Because there are a number of
defects, formed by the cylinders surrounded by five or seven
neighbors, the remaining task of the system is to modulate the
arrangement of these cylinders to annihilate the defects in the
following time. When ¢ = 2 x 10°, all cylinders are arranged
perfectly on the hexagonal lattice. It indicates that the order-
ing process of the whole structure is done, and accordingly
the ordering time can be recorded. To record precisely the or-
dering time, #,, we have to examine the ordering degree of
structures by a small time interval, and here we choose it to
be 10*At.

For a stable perfect morphology in thermodynamics, the
ordering time toward its perfect state is the most critical quan-
tity from the aspect of kinetics. In our simulations, we find
that the ordering process is a typical stochastic event for a
given system with fixed hexagonal size. To explore the dis-
tribution of the ordering time, we run 100 sample simula-
tions, starting from random disordered configurations, within
a maximum time step of 10° for a given hexagon. Figure 5
presents the distributions of the ordering time for (a) D/Lg
= 13 and (b) D/Ly = 15, respectively. It is known that
the Poisson distribution is a discrete probability distribution
that expresses the probability of a given number of events
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FIG. 5. Histogram plots of the distributions of the ordering time for the di-
agonal size of D/Lg = 13 (a) and D/Ly = 15 (b), respectively. The Pois-
son distribution is used to fit the results. (a) The time interval is chosen as
8t = 10* time steps, and the Poisson distribution curves of three parame-
ters of A = 3, 4, and 5, are plotted; (b) The time interval is chosen as §t
=3x 104, and A = 2, 3, and 4, respectively.
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occurring in a fixed interval of time and/or space if these
events occur with a known average rate and independently of
the time since the last event. Here the events that a given sys-
tem reaches its perfect state in the ordering time roughly sat-
isfies the Poisson distribution. To fit the distribution of the or-
dering time with the Poisson distribution, first we must choose
an appropriate time interval, 8z. Then the ordering time, #,,
can be marked by a integer number, k, when két < 1, < (k
+ 1)8t (k =0, 1, 2, ...). The probability that the ordering
event for a perfect pattern occurs at the time interval of k
is given by the Poisson distribution as fik; A) = Ake=r k!,
where A is equal to the expected value of k. In Figure 5(a),
D/Ly = 13, we choose 8¢ = 10*. Three fitted curves of Pois-
son distribution are plotted with A = 3, 4, and 5, and with
time shifts toward the time increasing direction of #) = 4.5
x 10*, 3.5 x 10*, and 2.7 x 10*, respectively. The time shift
can be accounted for by the initial stage of microphase sep-
aration, in which the cylinder domains are not well formed.
In other words, the whole ordering process can be divided
into two stages: the phase separating stage, fy, and the regu-
lating stage of the domain arrangement, #,. Thus, the order-
ing time is composed of the two times, i.e., t, = fy + t,.
In the Poisson distribution, ¢, corresponds to the expecta-
tion of A. Though the three fittings give different groups of
fo and ¢,, their sums of 7,, 7.5 x 10%, 7.5 x 10* and 7.7
x 10* (A = 3, 4, 5), are very close. In Figure 5(b) of D/L,
= 15, the time interval is chosen as 8¢ = 3 x 10*. The order-
ing time is determined by #, = 8.5 x 10* + 287 =14.5 x 10%,
6 x 10* + 38t =15 x 10, and 3.5 x 10* + 48t =15.5 x 10%,
for A = 2, 3, and 4, respectively. Though the diagonal size is
increased only 15% from 13L to 15L, the required ordering
time becomes almost twice.

The predicted ordering time is useful to measure the re-
alizability of a perfectly ordered pattern under the direction
of a given hexagon. To fit the ordering-time distribution of
a given hexagon into the Poisson distribution is an effec-
tive method to determine the ordering time. However, it is
very time-consuming as it requires a large number of running
samples. We use a rougher but quicker method as a substi-
tute to do this measurement, i.e., simple sample average. For
each given hexagon, we run eight independent TDGL simula-
tions to average the ordering time, which is given in Figure 6.

o
>
w

6 8 012
D/L

0

14 16 18 20

FIG. 6. Ordering time as a function of the diagonal size of hexagons, plotted
in a double-logarithm plot. The solid line is obtained by a linear fitting. Note
that, the filled symbol for D = 19L, indicates that the ordering time is beyond
10° time steps in one or more runs of our simulated eight samples.
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Though the statistical error is big because of the small num-
ber of samples, it can give a good qualitative prediction. For
example, the ordering time estimated with this method is #,
= (7.6 £ 3.4) x 10* and (14.1 & 3.6) x 10*, for D/Ly = 13
and D/Ly = 15, respectively, which are in good agreement
with those measured by the Poisson-distribution fitting. The
double-logarithm plot of the ordering time in Figure 6, 1, as a
function of D/L, shows a good linear relation. This indicates
that the ordering time increases roughly according to a power-
law relation, #, ~ (D/Ly)"", where v = 0.22. The underlined
evolution mechanism of structures described by the power-
law relation in the hexagonal confinement is consistent with
that in bulk system. Usually, the time evolution of structures
in bulk is measured by the evolution of the correlation length,
&. It has been shown that the correlation length £ grows as
time according to a similar power law, & ~ ¢”, where the co-
efficient of v is about 1/5 or 1/4 in bulk.”>7* In the present
BCP systems under the hexagonal confinement, the perfectly
ordered structure is achieved as soon as the correlation length
reaches the size of the hexagon. In other words, the presence
of the lateral hexagonal confinement cuts off the infinite cor-
relation length for perfect order in bulk into a finite length,
which is comparable or smaller than the hexagonal size. The
simple analysis can provide a rough relation between the or-
dering time and the hexagonal size, i.e., 1, ~ (D/Ly)"", which
is in agreement with the prediction of our simulations. This re-
lation is helpful for us to estimate the required ordering time
for a larger system toward perfect order with the known order-
ing time of a small system. The diagonal sizes of hexagons
in Fig. 4 of Ref. 17 are about (a) D/Ly ~ 15, (b) D/L,
~ 17, (c) D/Ly ~ 31, (d) D/Ly ~ 35, and (e) D/Ly = 45,
respectively. The perfect hexagonal pattern is observed in the
hexagon of (a), and only one defect appears in the hexagon
of (b). Accordingly this indicates that the annealing time of
18 h used in the experiments is long enough for the system
of (a), and it is close to the critical ordering time required by
the system of (b), i.e., tl(,b) ~ 18 h. Then we can estimate the
required annealing time for the other large systems of (c), (d),
and (e) using the power-law relation of #, ~ (D/L)"/”, which
is t;f) ~ 276h, t;,d) ~ 480, and tl(f) ~ 1503 h, respectively.
Obviously, all required annealing times by the three large sys-
tems are much longer than the real time of 18 h used in ex-
periments. When the real annealing time is shorter than the
required one, some defects are survived after the structure
evolution. For a fixed annealing time, more and more de-
fects are observed as the hexagonal size increases because the
required ordering time grows fast. As soon as the required
ordering time in a large hexagon becomes too long for ex-
periments, to obtain a prefect pattern in such large system be-
comes impractical. For example, in the hexagon of D/Lj & 45,
the required ordering time has become as long as a couple of
months. Even though we can spend such long time to anneal
the sample, to keep the stable annealing conditions for such
long time is also extremely challenging. Therefore, the esti-
mation of the required ordering time for a large system can
help one to set the annealing time, or to predict the possibility
of achieving a perfect pattern in a large system within a rea-
sonable annealing time. The ordering time in Figure 6 is de-
termined for the hexagons with the almost optimal diagonal
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size for the formation of perfectly ordered hexagonal cylin-
ders, which is the odd number multiple of Ly. When the diag-
onal size deviates from the optimal value, it tends to cause
more defects in the initial stage. Usually, it takes a longer
time to eliminate more defects. In addition, the average global
stress induced by the size deviation slows down the annihilat-
ing process of defects, too. For example, when D/Ly = 15
is increased to D/Ly & 15.24, the ordering time is increased
from (14.1 & 3.6) x 10 to (24.12 £ 9.54) x 10*. Therefore,
when there is a small deviation of the hexagonal size from the
optimal value, it is necessary to prolong the corresponding
annealing time in experiments.

The ordering process of the structures is helpful for one
to understand the ordering mechanism. The evolution of the
defect concentration is an effective quantity to measure the
structure evolution, especially in a large-scale system.?* How-
ever, the size of the present system is not as large as general
bulk systems, and furthermore, the number of defects is small
because of the direction of the hexagonal walls. These limit-
ing factors can induce large statistical error in the computa-
tion of defect concentrations. Therefore, we need to look for

J. Chem. Phys. 137, 194905 (2012)

an alternative quantity. Bosse et al. have proposed an alter-
native quantity, the space fluctuation of the bonds connecting
two neighbor cylinders, which can be defined as®

Zyllvidl(Ln - E)Z
Npg — 1

, 13)

where L, is the length of bond # (all bonds are labeled by
a series of integers, n = 1, 2, ...), Npq is the total number
of bonds, and L = Zflvi‘ll L, /Ny is the average bond length
in a given system. During the evolution, 6 usually decreases
to be close to zero as the structure evolves toward the per-
fect state, and Nyq also evolves until it reaches the final value,
(9m?>-12m + 3)/4 (and (3m? + 1)/4 is the corresponding
domain number), where m is the number of domains aligned
on the diagonal of hexagon. Otherwise, there are fivefold or
sevenfold defects, and thus the structure is not perfectly or-
dered. In addition, the value of 8 can gives the ordering de-
gree in some sense. In Figure 7(a), we plot the time evolution
of 6 for a rather large system with D/Ly = 21, which corre-
sponds to the experimental size of about 700 nm in Ref. 17.
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FIG. 7. (a) The time evolution of the space fluctuation of bonds, , for D/Lg = 21. (b) Four typical snapshots of the structures are shown for r = 50 x 10%,
t=77 x 10% =78 x 10* and r = 85 x 10%, respectively (indicated by color circles and numbers 1, 2, 3, and 4) (a link to the corresponding movie of
the structure evolution is provided at the end of this figure caption). (c) The corresponding distributions of bonds with respect to their positions are presented
for the above four times. The bond length is indicated by both the filled circle size and the color spectrum. However, for the reason of clarity, different
length ranges are used in the four plots: L/Lo &~ 0.794-1.158 (c1), 0.714—1.050 (c2), 0.976-1.077 (c3), and 0.982-1.030 (c4), respectively (enhanced online)

[URL: http://dx.doi.org/10.1063/1.4765098.1].
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After the initial phase separating stage, 6 decreases
consistently and slowly from about 0.062 to 0.025 as time
until the time 2 which is labeled in Figure 7(a). After the time
2, the value of 6 suddenly drops to a very low value of about
0.006 within only thousands steps. To watch the structure evo-
lution directly, the density profiles of the structures, as well as
the distributions of bond length on positions, have been plot-
ted in Figures 7(b) and 7(c) for the times, (1) t = 50 x 104, (2)
t="77 x 104, 3)r=78 x 10*, and r = 85 x 10%, respectively
(the corresponding movie is linked to the caption of Figure 7).
The distribution of bond length is indicated by both the circle
size and the color spectrum. To enlarge the length difference
between bonds, different ranges of bond length are used in the
four plots: (c1) L/Ly ~ 0.794-1.158, (c2) 0.714-1.050, (c3)
0.976-1.077, and 0.982-1.030 (c4).The bond-length distri-
butions obviously show that the large nonuniformity appears
near the locations of defects.

In Figure 7(cl), it is seen that the defects cluster forms
a boundary to separate the central domain grain and the
surrounding domains as they have mismatched orientations.
The cluster of defects including pairs of fivefold and seven-
fold defects is difficult to be annihilated.”>"* In this sample,
the defect cluster survives until = 78 x 10*. During the
long surviving period, the system slowly regulates the do-
main positions around these defects to eliminate them one
by one, and thus to reduce the cluster size, and finally an-
nihilates all defects. In Figure 7(c2) of t = 77 x 10*, though
the bond/domain number indicates that all defects have been
eliminated, there is still noticeable nonuniformity of bond
length because the system does not get time to release the
stress yet when the defects are just removed. However, the
further ordering process is quick because most of domain po-
sitions need to regulated slightly as soon as no any domain is
added or removed. Further improvement of the bond-length
distribution has been achieved in Figure 7(c3) after additional
ten thousands time steps, and a nearly stable distribution for
the perfectly ordered pattern is obtained, immediately.
Figure 7(a) suggests that the value of 6 does not go to
zero, but a stable tiny value. The reason can be found in
Figure 7(c4) where the domains on the first layer near walls
have smaller connecting distance between each other, and
those on the second layer have larger bond length. The short-
distance fluctuation of bond length is induced by the surface
interaction of the walls. In a summary, the size of the central
grain, which is delimited by the cluster of pairs of fivefold and
sevenfold defects, determines significantly the ordering time
of the hexagonal system.

IV. CONCLUSIONS

The self-assembling thermodynamics and kinetics of
cylinder-forming diblock copolymers under the confinement
of hexagons have been systematically investigated using the
SCFT calculations and the TDGL simulations, respectively.
For small-size hexagons, a large number of 2D and 3D equi-
librium structures are explored, and the phase diagram for
stable phases with respect to the diagonal size of hexagon,
is identified. The phase diagram suggests that there are a
number of phases of straight cylinders, including C;_¢, C;_o,

J. Chem. Phys. 137, 194905 (2012)

Cy4_12, and Cy_g_12, which do not appear as stable phase in the
phase diagram of the diblock copolymers confined in circular
nanopores. In addition, the phase regions of C;_¢ and C; ¢ 1»
are centered around the optimal size (odd number multiple of
Ly) and have a extent of a period. This feature can predict that
there should exist similar stable phase regions of hexagonal
cylinder morphologies in large hexagons. Thus, the hexagonal
confinement can be an effective external condition to direct
the self-assembly of cylinder-forming diblock copolymers to-
ward large-scale perfectly ordered patterns from the aspect of
thermodynamics.

Then the ordering dynamics of cylinders, self-assembled
by the diblock copolymer confined in large hexagons, is stud-
ied by the TDGL simulations. One of the most important
quantities for the structure evolution is the required ordering
time in which the structure evolves to reach its perfect state.
First, we constructed the ordering-time distributions of struc-
tures with a large number of running samples for two given
hexagons of D/Ly = 13 and D/Ly = 15, respectively. It is re-
vealed that both distributions roughly satisfy the Poisson dis-
tribution. This suggests that the ordering event, that the sys-
tem evolves toward the perfect state, occurs stochastically in
the time interval of [k§z, (k + 1)§7], according to the Pois-
son distribution of fik; 1), where A8t + ty gives the expected
ordering time together with the domain forming time of #,.
Then, we choose an alternative method of simply averaging
on eight independent samples, which is rougher but quicker,
to estimate the ordering time for various hexagons. Our result
indicates that the ordering time is a power-law function with
respect to the hexagonal size, and the power-law coefficient is
as large as 4.5. This suggests that the required ordering time
grows quickly as the hexagonal size increases, and thus reach-
ing the time limit of experimental observation. For example,
in the hexagon with a diagonal size of 1500 nm in the ex-
periments by Xu et al.,'” our result predicts that the required
ordering time is as long as a couple of months which is rather
impractical for experiments. On the other hand, this predic-
tion is helpful for one to estimate the reasonable annealing
time for larger systems with the known annealing time of a
small system.
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